УДК 635.21:631.53.03:57.85

ВЛИЯНИЕИОНОВ СКУЛАЧЁВА (SkQ1) НА ФОРМИРОВАНИЕ МИКРОКЛУБНЕЙ КАРТОФЕЛЯ IN VITRO

Кравченко Д.В., Галушка П.А.

Всероссийский научно-исследовательский институт картофельного хозяйства им. А.Г. Лорха

E-mail: kravchenko80@inbox.ru

РЕЗЮМЕ

В статье приводятся данныепо сравнительной оценке формирования микроклубней invitro на питательной среде без регуляторов роста и с использованием биологически активного вещества нового поколения SkQ1 (ионов Скулачёва).

Ключевые слова: микроклубни, регуляторы роста, ионы Скулачёва (SkQ1), культура in vitro.

ВВЕДЕНИЕ

Одним из направлений применения биологически активных веществ является получение микроклубней в культуре in vitro. Эффективность микроклубнеобразования напрямую зависит от таких факторов как температура, свет, фотопериод, а также от сортовых особенностей растений (Лукаткин А.С. и др., 2000).

В процессе клубнеобразования у растений картофеля принимают участие все известные фитогормоны (ауксины, гиббереллины, абсцизины, цитокинины, а также этилен), находящиеся в динамическом равновесии, особенность которого — высокая чувствительность к воздействию химических и физических факторов (Ewing E.E., 1991).

В конкретном опыте, были проведены наблюдения по воздействию препарата SkQ1 (ионы Скулачёва) на инициацию микроклубнеобразования in vitro.

Работа с препаратом SkQ1 в культуре invitro ранее нами уже проводилась. Использование ионов Скулачева в культуре *in vitro* стимулировало процессы морфо- и ризогенеза ростковых черенков и сокращало время регенерации исходных микрорастений. После первого черенкования регенерантов через 40 суток культивирования ростковых черенков на среде Мурасиге-Скуга (МС) с добавлением препарата SkQ1 в концентрации 2,5 нМ наблюдали увеличение коэффициента их размножения в зависимости от сорта в 1,9–2,7 раза.

МАТЕРИАЛЫ И МЕТОДИКА

Исследования по изучению влияния ионов Скулачёва (SkQ1) на микроклубнеобразование in vitro, проводили во ВНИИКХ им. А.Г. Лорха первоначально в 2008–2009 гг. на ранних сортах Удача, Жуковский ранний и Импала, и в 2012–2013 гг. – на новых сортах картофеля – Метеор (раннеспелый) и Красавчик (среднеранний).

Синтезированные в НИИ ФХБ им. А.Н.Белозерского (МГУ) препараты SkQ (ионы Скулачева) представляют собой соединения катионов трифенилдецилфосфония и аналогов пластохинона хлоропластов. Они различаются по проникающей способности и соотношению анти- и прооксидазной активности (Скулачев В.П., 2005). При использовании в наноконцентрациях эти вещества принимают участие в регуляции баланса активных форм кислорода, играющих важную роль в процессах внутриклеточного обмена веществ (Скулачев В.П., 1989).

Для закладки опытов использовали черенки растений in vitro исследуемых сортов. В первом опыте длительность культивирования составляла 120 дней до полного отмирания растений. Фотопериод — 16 часов на протяжении всего срока культивирования.

Варианты опыта. 1 Среда МС – контроль (без регуляторов роста и фитогормонов); 2 – Среда МС + SkQ1 (2,5 Нм). Повторность – 100 растений на вариант. Препарат SkQ1 добавляли в питательную среду стерильным розливом в ламинар-боксепосле автоклавирования.

Во втором опыте длительность культивирования составляла 70 дней. Через 10, 15 и 30 дней, определяли морфогенную активность черенков, измеряли высоту, облиственность сформированных микрорастений. После культивирования В условиях 16-часовогофотопериода. микрорастения были переведены на естественное освещение в условия короткого дня, для закладки растениями микроклубней. Наблюдения за динамикой микроклубнеобразования проводились через каждые 10 суток. 40 суток культивирования была определенамасса полученных микроклубней.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

По результатам опыта, проведенного в 2008-2009 гг. добавление в среду МС ионов Скулачева оказало значительное влияние на количественный выход и массу микроклубней всех изучаемых сортов (таблица 1).

Таблица 1 – Влияние препарата SkQ 1 на урожай микроклубней картофеля в 2008-2009 гг.

Вариант	Среднее количество микроклубнейна шт./раст.	Средняя масса микроклубней на, мг/раст.	Средняя масса микроклубня, мг				
	Удача						
Среда МС –	2,0	283	142				
контроль							
контроль Среда MC + SkQ1	2,3	308	134				
Жуковский ранний							
			10-				
Среда МС –	1,0	136	136				
контроль Среда MC + SkQ1							
Среда MC + SkQ1	1,1	272	247				
Импала							
Среда МС –	1,3	387	297				
контроль							
Среда MC + SkQ1	1,7	527	310				
HCP05	0,2	23	-				

Наибольшее влияние препарат оказывал на увеличение средней массы микроклубня и в меньшей степени — на увеличение количества клубней, но в конечном итоге масса клубней с одного растения увеличивалась у всех сортов в варианте с применением SkQ. У сорта Удача увеличение урожая происходило за счет увеличения количества клубней (на 15% по сравнению с контролем), а средняя масса клубня несколько снизилась (на 7%).

У сорта Жуковский ранний масса клубней под влиянием ионов Скулачева увеличилась в 2 раза. У сорта Импала сформировались самые крупные микроклубни, как в контроле, так и в опыте, причем опытный вариант превосходил контроль на 36%.

В опыте 2012–2013 гг. были проведены более подробные исследования роста, развития и клубнеобразования in vitro у новых сортов картофеля российской селекции.

Результаты опыта показали, что наибольшую отзывчивость на использование в питательной среде ионов Скулачёва показал сорт Красавчик (таблица 2).

Таблица 2 – Изменение биометрических показателей микрорастений картофеля при культивировании на различных питательных средах

Вариант опыта	Средняя высота микрорастений, мм		Среднее количество листочков, шт		
	Метеор	Красавчик	Метеор	Красавчик	
Через 10 дней					
Среда МС контроль	2,2	1,5	4,5	4,9	
MC+SkQ1 (2,5HM)	2,0	1,6	4,0	4,9	
Через 20 дней					

продолжение таол	одолжение таблицы 2	2
------------------	---------------------	---

Среда МС контроль	5,3	3,6	6,3	5,3
MC+SkQ1 (2,5нМ)	4,6	4,3	5,8	5,8
Через 30дней				
Среда МС контроль	7,0	4,8	9,5	7,2
MC+SkQ1 (2,5нМ)	7,7	5,1	8,6	7,9

Через 10 суток после первого черенкования высота микрорастений на варианте с SkQ1 превышала значение показателя на контрольном варианте на 0,12 мм, через 20 дней на 0,7 мм. Через 30 дней культивирования увеличение высоты микрорастений опытного варианта (MC+SkQ1) составило всего 0,3 мм.

У сорта Метеор, наоборот, увеличение высоты микрорастений на варианте с SkQ1 относительно контроля было отмечено только через 30суток после черенкования и составило 0,7 мм.

Микрорастения сортов Метеор и Красавчик формировали клубни как на питательной среде без регуляторов роста (контроль) так и на питательной среде с SkQ1.

Микрорастения сорта Метеор за весь период культивирования лучше завязывали микроклубни на среде МС, с 20 до 73,3%, на среде с SkQ1 с 13,3% до 53,3 % (рисунок 1, рисунок 2).

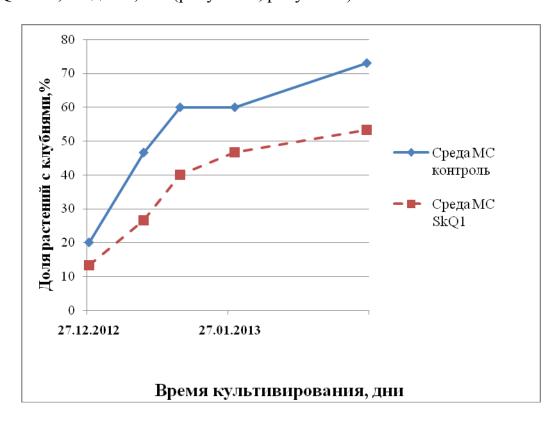


Рисунок 1 – Динамика микроклубнеобразования, сорт Метеор

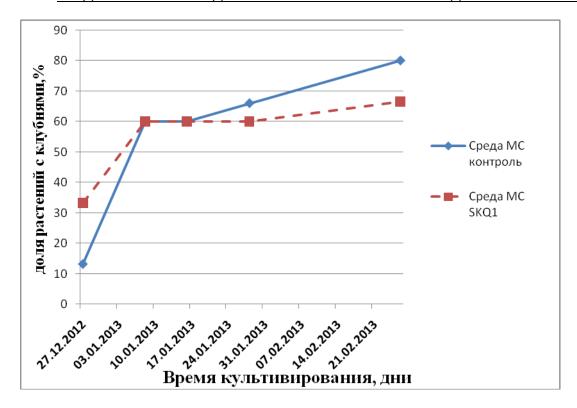


Рисунок 2 – Динамика микроклубнеобразования, сорт Красавчик

Доля растений сорта Красавчик на варианте с SkQ1 через 10 дней после начала клубнеобразования превысила контроль на 20%. Через 20 дней культивирования значение составляло 60 % и находилось на одном уровне на контроле и опытном варианте. Через 30 дней культивирования число растений с клубнями возросло до 66% на контроле, на варианте с SkQ1 данное значение оставалось на уровне 60%. Через 40 дней культивирования доля растений с клубнями на контрольном варианте возросла до 80%, на варианте cSkQ1 до 66,6%

Наибольшая средняя масса одного клубня отмечена у сорта Красавчик на варианте с SkQ1–121,0 мг, что превысило контроль на 39 мг. У сорта Метеор превышение контроля по массе составило 3,7 мг (таблица 2).

Таблица 3 – Влияние препарата SkQ 1 на урожай микроклубней картофеля в 2012-2013 гг.

Вариант	Среднее количество микроклубнейна шт./раст.	Средняя масса микроклубней на, мг/раст.	Средняя масса микроклубня, мг		
Метеор					
Среда МС –	1,2	83,3	69,4		
контроль	1,2	00,0	55,1		
Среда МС +	1,1	80,5	73,1		
SkQ1	,	,	,		

Продолжение таблицы 3

Красавчик				
Среда МС –	1,2	96,8	80,6	
контроль				
Среда МС +	1,1	133,1	121,0	
Среда MC + SkQ1				
HCP05	0,3	27	-	

Наиболее отзывчивым на действие ионов Скулачева оказался сорт Красавчик. По количеству клубней варианты опыта практически не различались.

ЗАКЛЮЧЕНИЕ

По полученным результатам опыта, можно предположить, что ионы Скулачёва в культуре in vitro, помимо развития морфогенеза микрорастений, способны выступать, как фактор способный значительно увеличивать массумикроклубней. Отмечено положительное влияние препарата на увеличение количествамикроклубней, что важно с точки зрения семеноводства.

Литература

- 1. Лукаткин, А.С., Чигрина, С.А., Мокшин, Е.В., Любишкина, И.Н. Эколого-физиологические особенности микроклубнеобразования картофеля в культуре invitro // Морфофизиология специализированных побегов многолетних травянистых растений: Программа и тезисы докладов Всероссийского совещания, Сыктывкар, 3-5 окт. 2000, с.103-105
- 2. Скулачев, В.П. Энергетика биологических мембран. М.: Наука, 1989.- 564 с.
- 3. Скулачев, В.П. Старение как атавистическая программа, которую можно попытаться отменить. //Вестник РАН— 2005. т №9. С. 831-843.
- 4. Ewing, E.E. Induction of tuberization in potato. In: The molecular and cellular biology of the potato /M.E. Vayda, W.D. Park (eds.) C.A.B. International, Redwood Press Ltd., Melksham, 1991: 25-41.

РАЗДЕЛ 5. СЕМЕНОВОДСТВО И ТЕХНОЛОГИИ ПРОИЗВОДСТВА КАРТОФЕЛЯ

INFLUENCE THE SKULACHEVS IONS (SKQ1) ON FORMATIONPOTATO MICROTUBERSIN VITRO

KRAVCHENKO D.V., GALUSHKA P.A

SAMMARY

The article presents data the comparative evaluation of formation microtubers in vitro on a medium without growth regulators and with the use of the active substance of the new generation SkQ1 (Skulachevs ions).

Keywords: microtubers, growth regulators, Skulachevs ions (SkQ1), culture in vitro.

Поступила в редакцию 24.06.2013 г.